Problems 6

In what follows, we denote by X a Polish space, by $C_b(X)$ the space of bounded continuous functions with the supremum norm, by \mathcal{B}_X the Borel σ -algebra on X, and by $\mathcal{P}(X)$ the space of probability measures on (X, \mathcal{B}_X) endowed with the weak topology. We write $\langle V, \mu \rangle$ for the integral of $V \in C_b(X)$ against the measure $\mu \in \mathcal{P}(X)$.

6.1**Formulations**

Problem 1. Let $\lambda \in \mathcal{P}(X)$. Prove that the function $Q: C_b(X) \to \mathbb{R}$ taking Vto $\ln\langle e^V, \lambda \rangle$ is 1-Lipschitz and convex.

Problem 2. Let $\lambda \in \mathcal{P}(X)$. Prove that the function $\mu \mapsto \operatorname{Ent}(\mu \mid \lambda)$ acting from $\mathcal{P}(X)$ to $\mathbb{R}_+ \cup \{+\infty\}$ is lower semicontinuous and strictly convex.

Problem 3. For $\lambda \in \mathcal{P}(X)$ and $A \geq 0$, let $M_A := \{ \mu \in \mathcal{P}(X) : \operatorname{Ent}(\mu \mid \lambda) \leq A \}$. Prove that $M_A \subset \mathcal{P}(X)$ is compact.

Problem 4. Using the notation of Problems 1 and 2, prove that, for any $V \in C_b(X)$ and $\lambda, \mu \in \mathcal{P}(X)$, we have

$$\operatorname{Ent}(\mu \mid \lambda) = \sup_{V \in C_b(X)} (\langle V, \mu \rangle - Q(V)),$$

$$Q(V) = \sup_{\mu \in \mathcal{P}(X)} (\langle V, \mu \rangle - \operatorname{Ent}(\mu \mid \lambda)).$$
(6.2)

$$Q(V) = \sup_{\mu \in \mathcal{P}(X)} (\langle V, \mu \rangle - \text{Ent}(\mu \mid \lambda)).$$
 (6.2)

Problem 5. Prove that the supremum in (6.2) is saturated on the unique measure $\mu_V = Z_V^{-1} e^V \lambda$, where $Z_V = \langle e^V, \lambda \rangle$, whereas the supremum in (6.1) may not be attained.

Problem 6. Let $V \in C_b(X)$ and let $\lambda \in \mathcal{P}(X)$. Prove the contraction relation

$$\inf \{ \operatorname{Ent}(\mu \mid \lambda) : \langle V, \mu \rangle = r \} = \sup_{\alpha \in \mathbb{R}} (r\alpha - \ln Z_{\alpha V}). \tag{6.3}$$

Problem 7. Let $\lambda \in \mathcal{P}(X)$, let $V \in C_b(X)$ be a function that is not λ -almost everywhere constant, and let $I_V(r)$ be the expression on the right-hand side of (6.3). Prove the following properties.

- (a) Let $q(\alpha) = \ln Z_{\alpha V}$. Then $q \in C^{\infty}(\mathbb{R})$ and q' is strictly increasing.
- (b) Let us denote by S the support of λ and define the numbers $A = \inf_S V$ and $B = \sup_{S} V$. Then $q'(\alpha) \to A$ as $\alpha \to -\infty$ and $q'(\alpha) \to B$ as $\alpha \to +\infty$.
- (c) The function $I_V(r)$ is finite for any $r \in (A, B)$.

Problem 8. Let λ and V be as in Problem 7, let $Z_{\beta} = \langle e^{-\beta V}, \lambda \rangle$, and let μ_{β} be the measure $Z_{\beta}^{-1}\mu_{-\beta V}$. Prove the following properties.

(a) For any $r \in (A, B)$, there is a unique $\beta \in \mathbb{R}$ such that the measure μ_{β} is the unique minimiser of the infimum on the left-hand side of (6.3)

(b) For any $\beta \in \mathbb{R}$, we have

$$-\ln Z_{\beta} = \inf_{\mu \in \mathcal{P}(X)} (\beta \langle V, \mu \rangle + \operatorname{Ent}(\mu \mid \lambda)). \tag{6.4}$$

Moreover, the infimum on the right-hand side is attained only at $\mu = \mu_{\beta}$.

Problem 9. Let $\lambda \in \mathcal{P}(X)$ and $V \in C_b(X)$ be such that V is not λ -almost everywhere constant, and let numbers A and B be defined in Part (b) of Exercise 7. Suppose a measure $\mu \in \mathcal{P}(X)$ be such that $\operatorname{Ent}(\mu \mid \lambda) < \infty$ and $\langle V, \mu \rangle \in (A, B)$. Prove that there positive numbers ε_0 and C such that, for any $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$, one can find a measure $\mu_{\varepsilon} \in \mathcal{P}(X)$ satisfying the relations

$$\langle V, \mu_{\varepsilon} \rangle = \langle V, \mu \rangle + \varepsilon, \quad \text{Ent}(\mu_{\varepsilon} | \lambda) \le \text{Ent}(\mu | \lambda) + C |\varepsilon|.$$
 (6.5)

Problem 10. Let $(\mu_n)_{n\geq 1}$ be a sequence of probability measures on X. Define a set function $S: \mathcal{B}_X \to [0,1]$ by the relation

$$S(\Gamma) = \limsup_{n \to \infty} (\mu_n(\Gamma))^{1/n}, \quad \Gamma \in \mathcal{B}_X.$$
 (6.6)

Prove that S is a Ruelle–Lanford function.

Problem 11. Let X be a topological vector space and let $I: X \to [0, +\infty]$ be a lower semicontinuous function such that

$$I\left(\frac{1}{2}(x_1+x_2)\right) \le \frac{1}{2}I(x_1) + \frac{1}{2}I(x_2)$$
 for any $x_1, x_2 \in X$. (6.7)

Prove that I is convex.

Problem 12. Prove Sanov's theorem for an i.i.d. sequence of random variables in a compact metric space, using the Ruelle–Lanford approach and the result on decoupled measures.