# Finite Speed of Boson Transport in the Presence of Long-Range Interactions

#### Carla Rubiliani

joint work with Marius Lemm and Jingxuan Zhang

University of Tübingen

August 13 at Quantissima in the Serenissima V





# Goal



## Set-up

Consider a finite lattice  $\Lambda \in \mathbb{R}^d$  and Hamiltonian of the form

$$H = \sum_{x,y \in \Lambda} J_{xy} b_x^{\dagger} b_y + V$$

- $b_x$ ,  $b_x^{\dagger}$  are the creation and annihilation operators at site x
- $lacksquare V = \Phi(\{n_x\}_{x \in \Lambda})$  with  $\Phi$  arbitrary and  $n_x = b_x^\dagger b_x$
- lacksquare Example of hopping matrix  $J_{x,y}$

**Long range:**  $|J_{xy}| \le C|x-y|^{-\alpha}$ 

Finite range:  $J_{xy} = 0$  if  $|x - y| > \rho$ 

# Set-up

Consider a finite lattice  $\Lambda \in \mathbb{R}^d$  and Hamiltonian of the form

$$H = \sum_{x,y \in \Lambda} J_{xy} b_x^{\dagger} b_y + V$$

- $b_x$ ,  $b_x^{\dagger}$  are the creation and annihilation operators at site x
- $lacksquare V = \Phi(\{n_x\}_{x \in \Lambda})$  with  $\Phi$  arbitrary and  $n_x = b_x^\dagger b_x$
- Example of hopping matrix  $J_{x,y}$

**Long range:**  $|J_{xy}| \le C|x-y|^{-\alpha}$ **Finite range:**  $J_{xy} = 0$  if  $|x-y| > \rho$ 

Hilbert space: bosonic Fock space  $\mathcal{F}^+(\ell^2(\Lambda))$ 

## Set-up

Consider a finite lattice  $\Lambda \in \mathbb{R}^d$  and Hamiltonian of the form

$$H = \sum_{x,y \in \Lambda} J_{xy} b_x^{\dagger} b_y + V$$

- $b_x$ ,  $b_x^{\dagger}$  are the creation and annihilation operators at site x
- $V = \Phi(\{n_x\}_{x \in \Lambda})$  with  $\Phi$  arbitrary and  $n_x = b_x^{\dagger} b_x$
- **Example** of hopping matrix  $J_{x,y}$

**Long range:**  $|J_{xy}| \le C|x-y|^{-\alpha}$ **Finite range:**  $J_{xy} = 0$  if  $|x-y| > \rho$ 

Hilbert space: bosonic Fock space  $\mathcal{F}^+(\ell^2(\Lambda))$ 

Notation:  $N_X = \sum_{x \in X} n_x$  number op. on a region  $X \subset \Lambda$ 

1/8

# Main result: Assumptions

■ Polynomial decay of the interactions:

$$|J_{xy}| \le C_J |x - y|^{-\alpha}$$
 for  $\alpha > d + 1$ 

# Main result: Assumptions

■ Polynomial decay of the interactions:

$$|J_{xy}| \le C_J |x - y|^{-\alpha}$$
 for  $\alpha > d + 1$ 

■ Controlled density initial states:

$$\exists \ \lambda_2 > \lambda_1 > 0 \quad \text{s.t.} \quad \lambda_1 \leq \langle n_x \rangle_0 \leq \lambda_2 \quad \forall x \in \Lambda$$

where we used the notation  $\langle A \rangle_0 = \langle \psi_0, A \psi_0 \rangle$ 

# Main result: Assumptions

■ Polynomial decay of the interactions:

$$|J_{xy}| \le C_J |x - y|^{-\alpha}$$
 for  $\alpha > d + 1$ 

■ Controlled density initial states:

$$\exists \ \lambda_2 > \lambda_1 > 0$$
 s.t.  $\lambda_1 \leq \langle n_x \rangle_0 \leq \lambda_2 \quad \forall x \in \Lambda$ 

where we used the notation  $\langle A \rangle_0 = \langle \psi_0, A \psi_0 \rangle$ 

An important role is played by the first moment of the hopping matrix

$$\kappa = \sup_{x \in \Lambda} \sum_{y \in \Lambda} |J_{xy}| \, |x - y| < \infty$$

2/

#### Main Result

For every  $v > 12\kappa$  and for all R,  $r \ge 1$  with R - r big enough and initial states  $\psi_0 \in \mathcal{D}(N_\Lambda^{1/2})$  with controlled density, it holds for every  $vt \le R - r$ 

(UB) 
$$\langle N_{B_r} \rangle_t \leq \langle N_{B_R} \rangle_0 e^{vt/(R-r)}$$

(LB) 
$$\langle N_{B_R} \rangle_t \ge \langle N_{B_r} \rangle_0 e^{-vt/(R-r)}$$

Bosons move at most with speed v, for all  $v>12\kappa$ 

 $\Rightarrow$  12 $\kappa$  bounds the maximal speed of propagation



#### Remarks

We can extend this to higher moments of the number operator, with requiring the same decay of the interactions.

interesting because it can help us refine Lieb-Robinson bounds for long range bosons

- Valid for long range interactions
- "Thermodynamically stable"
  i.e. no global number operator appearing in the error term
- Assumptions on the initial state, still physically relevant

## Tools

 $1) \ \textit{\textbf{ASTLO}} \ (\text{adiabatic space-time localization observables})$ 

## **Tools**

- 1) **ASTLO** (adiabatic space-time localization observables)
- 2) Downward multi-scale induction

Given a special smooth cut-off function f, define the ASTLOs as

$$N_{f_{\pm}} := \sum_{x \in \Lambda} n_x f_{\pm}(x)$$



Given a special smooth cut-off function f, define the ASTLOs as

$$N_{f_{\pm}} := \sum_{x \in \Lambda} n_x f_{\pm}(x)$$



■ Track particles on the region of interest in a smooth way

Given a special smooth cut-off function f, define the ASTLOs as

$$N_{f_{\pm}} := \sum_{x \in \Lambda} n_x f_{\pm}(x)$$



- Track particles on the region of interest in a smooth way
- Their time evolution can be controlled

Given a special smooth cut-off function f, define the ASTLOs as

$$N_{f_{\pm}} := \sum_{x \in \Lambda} n_x f_{\pm}(x)$$



- Track particles on the region of interest in a smooth way
- Their time evolution can be controlled
- Can be related to the number operator on the region of interest

### Multi scale induction

- At each induction step we control the particles moving from region II to region I
- The induction hypothesis has already accounted for the contribution from region III into region I



### Multi scale induction

- At each induction step we control the particles moving from region II to region I
- The induction hypothesis has already accounted for the contribution from region III into region I

 $2^{k+1}$ 

- Allows to control particles far away

### Multi scale induction

- At each induction step we control the particles moving from region II to region I
- The induction hypothesis has already accounted for the contribution from region III into region I

2<sup>k</sup>

- Allows to control particles far away
- Makes the bound "thermodynamically stable"

# Summary and Future Directions

#### Summary:

- Under the assumption of bounded density we controlled particle propagation for polynomially decaying interactions
- First tool: ASTLO

Tracks particles across the lattice
Their time evolution can be controlled

■ Second tool: Downwards multi-scale induction

To control the contribution from particles far away

#### **Future Directions:**

- Refine thermodyn. stable long range Lieb-Robinson bounds for bosonic system
- Remove lower bound on the density at initial time

# Summary and Future Directions

#### Summary:

- Under the assumption of bounded density we controlled particle propagation for polynomially decaying interactions
- First tool: ASTLO

Tracks particles across the lattice
Their time evolution can be controlled

Second tool: Downwards multi-scale induction

To control the contribution from particles far away

#### Future Directions:

- Refine thermodyn. stable long range Lieb-Robinson bounds for bosonic system
- Remove lower bound on the density at initial time

#### Thank You For Your Attention!